
IPP-Report

Hartmut Zohm

Forced Rotation of Tearing Modes by Time Varying RMP Fields

IPP 2022-06
September 2022



1 
 

Forced Rotation of Tearing Modes by Time Varying RMP Fields 

Hartmut Zohm 

DEMO Central Team, EUROfusion PMU, Boltzmannstr. 2, D-85748 Garching 

Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching 

 

1.) Introduction 

The occurrence of tearing modes limits the operational space of tokamaks in density and radiative 

losses (in both cases triggered by the current gradient, ‘classical’ tearing modes) as well as achievable 

beta (pressure driven, ‘neoclassical’ tearing modes), with the islands occurring on resonant surfaces 

reducing the confinement, often also leading to disruptive termination of the discharge. A possible 

countermeasure is to drive local currents at the resonant surface by Electron Cyclotron Current Drive 

(ECCD), preferably in the O-point of the magnetic island. In present day experiments, initially rotating 

tearing modes are often observed to lock in the laboratory frame, which is explained by a slowing down 

due to eddy currents induced in the vacuum vessel wall and then a phase locking to the helical 

component of the unavoidable error field due to imperfect shape and positioning of the coil system or 

its feeds (see e.g. [1]). Since it is not guaranteed that the locked phase position is compatible with O-

point injection through the ECCD launcher, it is proposed for future large tokamaks to use active coil 

sets producing helical components (Resonant Magnetic Perturbation, RMP) to move the locked mode 

into the optimum position for stabilization. The principal feasibility of this scheme has been 

demonstrated experimentally [2] and control has been discussed in [3] and [4]. The aim of this 

contribution is to identify the time scales for this process and to derive a criterion for the RMP strength 

depending on the required time scale for the forced rotation. An application on EU-DEMO is discussed. 

2.) The model 

We describe the mode dynamics by a momentum balance equation taking into account viscous drag, 

the force due to eddy currents in the resistive wall and the force due to interaction with an external 

helical field. We chose a simple cylindrical geometry and neglect the toroidal component of the 

perturbed field. In this model, the mode interacts only with the component of the error field that has 

the same single helicity, so that the external field mimicks both the error field as well as the (externally 

controlled) RMP field. The evolution of the island width is modelled by a modified version of the 

Rutherford equation, taking into account the effect of the RMP on the island width, but neglecting 

small island effects since we are only interested in the locking of modes of appreciable size. The model 

is described in the following two sections, and the detailed expressions for the different terms can be 

found in [1]. 

2.1) Momentum balance 

The momentum balance consists of the following forces that are assumed to lead to a toroidal torque 

at R=R0, the tokamak major radius: 

𝐹𝑣𝑖𝑠𝑐 = 𝑚𝑝𝑅0

(𝜔0 − 𝜔)

𝜏𝑀
                                                                      (1) 

is the viscous force that pulls the rotation frequency  back to the ‘natural’ rotation frequency 0 on 

the momentum confinement time scale M. Here, mp is the mass of the plasma involved, and we 

assume that it is the whole plasma mass, although on time scales much smaller than M, one may argue 

that initially, it is only the mass in the island. Next, we add the drag due to the resistive wall 
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𝐹𝑤𝑎𝑙𝑙 = −
𝜋2𝑅0𝑚2𝑊4
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𝑟𝑊
)

2𝑚

(𝐵0𝜃

𝑞′

𝑞
)

2
𝜔𝜏𝑊

1 + (𝜔𝜏𝑊)2
                                       (2) 

where W is the wall time constant for a mode with poloidal mode number m, B0 the equilibrium 

poloidal field and q’ the radial derivative of the safety factor q. All quantities are evaluated at the 

resonant surface rs. The island is parametrized by the island width W, which is proportional to the 

square root of the perturbed field Br 

𝑊 = 4√
𝑟𝑠𝑞𝐵𝑟

𝑚𝑞′𝐵0𝜃
                                                                        (3) 

where we have calculated W from the unshielded Br, i.e. neglected the reduction of island width due 

to the eddy currents in the wall, equivalent to the assumption (rs/rW)2m << 1.  

The force due to the error field is  

𝐹𝑒𝑓 = −
𝜋2𝑅0𝑚2𝑊𝑒𝑓

2 𝑊2

32𝜇0𝑟𝑠
(𝐵0𝜃

𝑞′

𝑞
)

2

sin (𝑚(𝜃 − 𝜃𝑒𝑓))                                        (4) 

where  is the poloidal angle which is related to the instantaneous angular velocity by  = d/dt and 

ef is the phase of the error field in the laboratory frame. Here, the strength of the error field has been 

parametrized by Wef, which is the width of the island that the error field would open up at the resonant 

surface.  As outlined above, applying an RMP of strength WRMP will lead to a similar force, but now the 

phase of the RMP field, RMP, will vary in time when the mode is moved around:  

𝐹𝑅𝑀𝑃 = −
𝜋2𝑅0𝑚2𝑊𝑅𝑀𝑃

2 𝑊2

32𝜇0𝑟𝑠
(𝐵0𝜃

𝑞′

𝑞
)

2

sin (𝑚(𝜃 − 𝜃𝑅𝑀𝑃(𝑡)))                             (5) 

We now set up the toroidal torque balance, using the fact that the electromagnetic forces are mainly 

in the poloidal direction and the toroidal torque is 1/q smaller than the poloidal torque 

𝑚𝑝𝑅0
2

𝑑𝜔

𝑑𝑡
= 𝑅0 (𝐹𝑣𝑖𝑠𝑐 +

1

𝑞
(𝐹𝑤𝑎𝑙𝑙 + 𝐹𝑒𝑓 + 𝐹𝑅𝑀𝑃))                                           (6) 

We then introduce another characteristic time scale, namely the Alfvén time scale A, that describes 

the (small) plasma inertia 

𝜏𝐴 = √
64𝑚𝑝𝜇0

𝜋2𝑟𝑠𝐵0𝜃
2                                                                             (7) 

Where the unusual numerical factor 64/ has been included for the sake of simplicity in what follows. 

In the last step, we normalize the angular frequency by the natural frequency, time by the wall time 

constant, and the island width by the radius of the resonant surface 

𝜔̃ =
𝜔

𝜔0
;        𝑡̃ =

𝑡

𝜏𝑊
;        𝑊̃ =

𝑊

𝑟𝑠
;                                                         (8) 

so that the torque balance in dimensionless form reads 
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with 

 

Here, the mode amplitude W can in principle be supplied as an arbitrary function of time, but in section 

2.3, we will link it to the Rutherford equation. However, some of the limiting cases can be discussed 

even for constant W, which we will do now. 

2.2) Discussion of limiting cases 

First, we consider the wall torque slowing down the mode, but not the error field or the RMP. This case 

is discussed in detail e.g. in [5], where it is shown that due to the nonlinearity of the wall torque, there 

is the possibility of two co-existing solutions, one at high frequency 𝜔̃ ≫ 𝜏𝑊, close to the natural 

frequency 0 and the other at 𝜔̃ ≪ 𝜏𝑊. The latter is often not seen in experiments since at such low 

frequencies, the mode can already be trapped in the error field (see below). The transition between 

the two states has a bifurcation character. Here, we only deal with cases where the model locks. 

Next, we discuss the trapping of the mode in the error field. Without external torque and viscosity, this 

is equivalent to a mass point moving in a sinusoidal potential and, depending on the initial inertial force 

~ (A0)2, the mode either rotates at a modulated frequency or oscillates around the equilibrium point 

=0, if 𝑊̃𝑒𝑓 > 𝜔0𝜏𝐴√𝑞/(2𝑚𝑠𝑊̃).  

For our problem, the more relevant case is the balance between drive and error field, since it 

determines the stationary locking point. In stationary state, (9) reduces to 

 

Since the sum of two sine functions of same frequency but arbitrary phase and amplitudes is again a 

sine function, i.e. 

 𝑊̃𝑡𝑜𝑡
2 sin(𝑚(𝜃 − 𝜃𝑡𝑜𝑡)) = 𝑊̃𝑒𝑓

2 sin (𝑚(𝜃 − 𝜃𝑒𝑓)) +𝑊̃𝑅𝑀𝑃
2 sin(𝑚(𝜃 − 𝜃𝑅𝑀𝑃))           (12)  

where the total island width can be expressed as 

𝑊̃𝑡𝑜𝑡
2 = √𝑊̃𝑒𝑓

4 +𝑊̃𝑅𝑀𝑃
4 + 2𝑊̃𝑒𝑓

2 𝑊̃𝑅𝑀𝑃
2 cos (𝑚(𝜃𝑒𝑓 − 𝜃𝑅𝑀𝑃))                 (13)   

so that the locking phase can calculated by  

𝑚(𝜃 − 𝜃𝑡𝑜𝑡) = sin−1 (
𝑞𝜔0

2𝜏𝐴
2

2𝜔0𝜏𝑀𝑚2𝑠2𝑊̃2𝑊̃𝑡𝑜𝑡
2 )                                                (14) 

One can see that in the case of a large mode/strong RMP field, the mode will lock close to the minimum 

of the total external helical field, while the mode will be unlocked by the viscous force ~ (A0)2 / (0M)   

for 𝑊̃𝑡𝑜𝑡 < 𝜔0𝜏𝐴/(𝑚𝑠𝑊̃)√𝑞/(2𝜔0𝜏𝑀). The precise amplitude and phase of the required RMP field 

will depend on the initially unknown error field and the position of the ECCD launchers. In our model 

with only one helicity, we can always completely cancel the error field so that the mode will never 

𝑑𝜔̃

𝑑𝑡̃
=  

𝜏𝑊

𝜏𝑀

(1 − 𝜔̃) −
𝑚2𝑠2𝑊̃4

𝑞𝜔0
2𝜏𝐴

2 (
𝑟𝑠

𝑟𝑊
)

2𝑚 𝜔̃

(𝜔0𝜏𝑊)−2 + 𝜔̃2

− 2𝜔0𝜏𝑊

𝑚2𝑠2𝑊̃2

𝑞𝜔0
2𝜏𝐴

2 (𝑊̃𝑒𝑓
2 sin (𝑚(𝜃 − 𝜃𝑒𝑓)) +𝑊̃𝑅𝑀𝑃

2 sin (𝑚(𝜃 − 𝜃𝑅𝑀𝑃(𝑡̃))))     (9) 
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1
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                                                                      (10) 
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completely lock and the problem becomes ‘academic’, but in reality, the error field and the RMP field 

will consist of a different spectrum of helical harmonics so that in general, complete compensation is 

not possible and remains an optimization problem. We come back to this discussion in Section 3.  

For our case of moving the phase of a locked mode, it is not only important to consider the amplitude 

for mode locking, Eqn. (13), but also the dynamic behavior of the system. For this, we note that the 

inertial and viscous terms can be neglected against the wall drag, and we can move the mode against 

the wall force by changing the phase tot in time if  

𝑚2𝑠2𝑊̃4

𝑞𝜔0
2𝜏𝐴

2 (
𝑟𝑠

𝑟𝑊
)

2𝑚

(𝜔0𝜏𝑊)2𝜔̃ < 2𝜔0𝜏𝑊

𝑚2𝑠2𝑊̃2

𝑞𝜔0
2𝜏𝐴

2 𝑊̃𝑡𝑜𝑡
2 sin(𝑚(𝜃 − 𝜃𝑡𝑜𝑡(𝑡)))          (15) 

where we have used the low frequency approximation of the wall drag term. Using Eqn. (10), this can 

be transferred into a simple condition for the time scale at which we can move the mode around: 

𝑑𝜃

𝑑𝑡̃
≤ 2 (

𝑟𝑊

𝑟𝑠
)

2𝑚

(
𝑊̃𝑡𝑜𝑡

𝑊̃
)

2

                                                                                (16) 

Since time is normalized to the wall time, it means that this is the typical time scale. If one tries to 

move the mode faster, it cannot follow and will ‘ratchet’ through the sinusoidal potential trapping it 

(see also discussion in Section 3).  

2.3) Mode evolution (Rutherford) equation 

In the previous section, we have solved the equation of motion for a prescribed W(t). More 

consistently, the mode evolution W(t) is described by the modified Rutherford equation (MRE). Since 

for our problem, we are not interested in the precise dynamics of the mode, we just adopt a version 

that leads to nonlinear saturation at W=Wsat, via a W-dependence of the stability parameter, ’(W), as 

is common for describing current driven tearing modes. More importantly for our problem, the 

external helical field will have an effect on the island width as well, which we take into account by a 

separate term in the MRE. This term can be stabilizing or destabilizing, depending on the island’s phase 

w.r.t. the total helical field represented according to Eqn. (12) in the following equation: 

 

where we have introduced a small island term W0 to remove the singularity at small island width. This 

usually involves the layer physics as described e.g. in [1], but here we are only interested in large island 

sizes. In this limit, we can get a simple relation for the change of saturated island width in the presence 

of the error field by setting d/dt to zero and linearising the resulting cubic equation: 

𝑊̃𝑠𝑎𝑡,𝑡𝑜𝑡 = 𝑊̃𝑠𝑎𝑡 (1 +
2𝑚

∆′
(

𝑊̃𝑡𝑜𝑡

𝑊̃𝑠𝑎𝑡

)

2

cos(𝑚(𝜃 − 𝜃𝑡𝑜𝑡)))                                  (18) 

If needed, the effects of neoclassical drive and ECCD stabilization can be added through the 

appropriate terms in the MRE. ECCD stabilization could lead to interesting dynamics with the mode 

unlocking at small W, thereby reducing the stabilization efficiency. This will be added in future work. 

2.4) Limitations of the model 

The model will be used to estimate the typical amplitudes and timescales for DEMO, so it is not meant 

to give precise quantitative information. However, it is still useful to discuss the main shortcomings 

and how they can be addressed: 

𝜏𝑅

𝜏𝑊

𝑑𝑊̃

𝑑𝑡̃
= 𝛥0

′ (1 −
𝑊̃

𝑊̃𝑠𝑎𝑡

) + 2𝑚 (
𝑊̃𝑡𝑜𝑡

𝑊̃ + 𝑊̃0

)

2

cos(𝑚(𝜃 − 𝜃𝑡𝑜𝑡))                         (17) 
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• The model contains only one helical poloidal harmonic in a cylinder. Mode coupling is 

therefore not included, i.e. any other spectral component will not lead to a net force. This can 

partly be amended by allowing for a shaped cross section and the resulting non-uniform 

stepsize of the poloidal angle in the poloidal plane, i.e. considering the cylinder as a map of a 

shaped cross-section onto straight field lines. This is discussed in the next section for the 

specification of the error field and its compensation by RMPs. 

• At present, the plasma is modelled as a rigid rotator that slows down on the timescale of the 

momentum confinement time. In reality, the electromagnetic forces act locally on the 

resonant surface, which then transmits the momentum on the momentum confinement time 

scale W to the rest of the plasma. Thus, at time scales shorter than W, only the mass contained 

in the island has to be considered, which is sometimes found in the literature and leads to a 

different W-dependence of the force terms (one power less than we use). This process is not 

resolved in our model, i.e. experimentally, the modes will lock faster than described here, but 

the slowing down of the whole plasma should be described better. In order to improve the 

description to a local one, a momentum diffusion equation would have to be solved in parallel, 

as was done in [6]. 

• The absence of rotation profile effects also leads to a potential overestimate of the restoring 

force (parametrised by balance of momentum confinement time and the ‘natural’ rotation 

frequency), since it assumes that the rotation of the resonant surface is equivalent to the 

average of the plasma momentum over radius. This can be corrected by assuming a 

momentum density profile, calculating the ratio between local and average momentum 

density, and then increasing the momentum confinement time by this ratio (i.e. the restoring 

force is actually lowered, which makes the mode lock faster).  

• The ‘natural rotation’ 0 depends on the different terms that generate mode rotation, of which 

only NBI torque is well known at present. While this term indeed dominates in present day 

devices, its extrapolation to future large devices is not straightforward since the contribution 

from the lesser known terms (intrinsic rotation, NTV torque) may dominate there (in fact, 

DEMO may work without NBI at all). 

These points will be taken into account in the next section when we insert numerical values into the 

equations outlined. 

3.) Application to DEMO 

For the application to DEMO, the input data for the error field are 

• an estimate of the error field on the q=2 surface due to imperfections in the TF and PF coils 

• the optimized RMP field for compensation evaluated by TMEI or plasma response criteria 

These are provided by F. Villone in a poloidal plane on the q=2 surface for each n separately, i.e. contain 

the effects of toroidicity and shaping. Also provided is the geometry of the q=2 surface. In order to 

translate these into the cylindrical model, a straight field line approach is provided using an analytical 

fit to the q=2 surface according to [1]: 

𝑅(𝑟, 𝜃) = 𝑅0 + 𝑟 cos 𝜃 + ∆(𝑟) − 𝑆2(𝑟) cos 𝜃 + 𝑆3 cos 2𝜃                              (19) 

𝑧(𝑟, 𝜃) = 𝑟 sin 𝜃 + 𝑆2(𝑟) sin 𝜃 − 𝑆3 sin 2𝜃                                                  (20) 

where r,  is a cylindrical co-ordinate system around R0,  is the Shafranov shift, S2 is related to the 

elongation  by k=(1+S2/r)/(1-S2/r), S3 is related to the triangularity  by =S3/(4r), and the prime 

denotes the radial derivative. For this parametrisation the straight field line angle can be given 

analytically: 
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𝜃∗ = 𝜃 − (
𝑟

𝑅0
− ∆′) sin 𝜃 −

𝑟𝜅′

(𝜅 + 1)2
sin 2𝜃 +

1

12
(𝑟𝛿′ − 𝛿) sin 3𝜃                     (21) 

Fig. 1 show the flux surface geometry as well as the shape parameters and the straight field line 

derived from it at the q=2 surface. 

        

Fig. 1: From left to right: flux surface geometry for EU DEMO (the q=2 surface is marked in blue), shape 

parameters as function of the radius, and straight field line angle as a function of the geometric poloidal 

angle w.r.t. the centre of the q=2 surface as well as in a Poincaré plot. 

Since both error field and RMP field are given in full toroidal geometry, it is necessary to extract the 

(2,1) component as our simple cylindrical model only deals with one helical component. Noting that 

the toroidal mode number n is a good quantum number, the field is provided by F. Villone as a normal 

component of the n=1 component on the q=2 surface in a poloidal plane as function of the geometric 

angle. Both fields are then mapped onto the straight field line angle using the transformation given by 

eqn. (21). Since the RMP field is created by a single toroidal row of coils, see left part of Fig. 2, it can 

be described by a single real function BRMP() in the poloidal plane with the whole n=1 component of 

the field given by  

BRMP(,)=BRMP() sin(-0)                                                               (22).  

The function BRMP() is also shown in Fig. 2 in both the geometrical and the helical angle.  

       

Fig. 2: different conceptual midplane RMP coils for DEMO (left) and the n=1 component produced by 

the blue variant on the q=2 surface, normalised to the value created by a current of 1 A in the coils. The 

field is shown in a poloidal plane as a function of both geometric and straight field line angle. 

The functional form (22) demonstrates that the RMP field does not have a net helical component, but 

it can be decomposed into pairs of helical components of opposite helicity and equal magnitude 

through 
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𝑓(𝜃, 𝜑) =
𝑎00

2
+ ∑ ∑(𝑎𝑚𝑛

+ cos(𝑚𝜃 + 𝑛𝜑) + 𝑏𝑚𝑛
+ sin(𝑚𝜃 + 𝑛𝜑))

∞

𝑛=0

∞

𝑚=0

+ ∑ ∑(𝑎𝑚𝑛
− cos(𝑚𝜃 − 𝑛𝜑) + 𝑏𝑚𝑛

− sin(𝑚𝜃 − 𝑛𝜑))

∞

𝑛=0

∞

𝑚=0

 

with 

𝑎𝑚𝑛
+ =

2

(2𝜋)2
∫ ∫ 𝑑𝜃𝑑𝜑𝑓(𝜃, 𝜑) cos(𝑚𝜃 + 𝑛𝜑)

2𝜋

𝜑=0

2𝜋

𝜃=0

 

𝑏𝑚𝑛
+ =

2

(2𝜋)2
∫ ∫ 𝑑𝜃𝑑𝜑𝑓(𝜃, 𝜑) sin(𝑚𝜃 + 𝑛𝜑)

2𝜋

𝜑=0

2𝜋

𝜃=0

 

𝑎𝑚𝑛
− =

2

(2𝜋)2
∫ ∫ 𝑑𝜃𝑑𝜑𝑓(𝜃, 𝜑) cos(𝑚𝜃 − 𝑛𝜑)

2𝜋

𝜑=0

2𝜋

𝜃=0

 

𝑏𝑚𝑛
− =

2

(2𝜋)2
∫ ∫ 𝑑𝜃𝑑𝜑𝑓(𝜃, 𝜑) sin(𝑚𝜃 − 𝑛𝜑)

2𝜋

𝜑=0

2𝜋

𝜃=0

 

Where   stands for either the geometric or the straight field line angle. For our case, we only have one 

toroidal component (n=1), and hence the mode spectrum is fully described by the poloidal mode 

number m. The first 5 Fourier components of the RMP field are shown in Fig. 3 in both poloidal angles. 

One can see that in the straight field line angle, significant spectral power is shifted from m=1 to m=2, 

which shows that it is important to consider the real geometry.  

 

Fig. 3: Poloidal mode spectrum of the n=1 component of the RMP field for the first five harmonics. 

The error field is determined by a Monte Carlo simulation of individual errors of the TF and PF coil 

positions and shapes. Fig. 4 shows a typical result of such a simulation and also the corresponding n=1 

component, which is a poor approximation since the error field is due to random perturbation of 16 

TF coils, but still represents the most critical component resonant with the plasma. 
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Fig. 4: map of typical error field due to errors in the TF coils (left) and n=1 component thereof (right). 

For the error field, a helical component cannot be excluded a priori, and in fact the input given by F. 

Villone consisted of an n=1 component which is given as Bef(), but has a real and an imaginary part, 

which, in real space can be visualized as  

Bef,tot = A() cos(-0())                                                              (23)  

with amplitude A() = ((Re(Bef[)])2+(Im[Bef()])2)1/2 and phase 0() = arctan(Im[Bef()]/Re[Bef()]). 

These functions are shown in Fig. 5. 

 

Fig. 5: Amplitude and phase of the n=1 component of the error field in a poloidal plane. 

The phase variation shows a more or less constant phase over two sections of the poloidal 

circumference with a flip by almost  in between. This indicates that in fact the net helical component 

is small, which is also clear from the map in Fig. 4 and relates to the 16 TF coils being the source of 

error field. The poloidal spectrum, evaluated similarly to the RMP field, is shown in Fig. 6. 

 

Fig. 6: Poloidal spectrum of the n=1 component of the error field shown in Fig. 4 and 5. 
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Similar to the RMP field, the transformation to the straight field line angle changes significantly the 

spectral distribution, this time moving power from the m=2 into the m=1 component. In fact, the case 

shown in Fig. 6 can only be poorly compensated according to the TMEI vacuum field method due to 

the very different distribution across the m=1,2,3 components between RMP and error field (note that 

the actual compensation algorithm takes into account also the phase and not only the amplitudes of 

the different spectral components).  

Nevertheless, we can use these fields to simulate the forced rotation of tearing modes in DEMO. The 

‘average’ error field quoted above leads to a very low 𝑊̃𝑡𝑜𝑡= 0.02 for which a mode of 𝑊̃𝑠𝑎𝑡= 0.15 locks, 

but the timescale for moving it around becomes large due to the quadratic dependence in Eq. (16). In 

Fig. 7, the temporal evolution of this case is shown. In the upper left panel, it can be seen that the 

mode frequency drops to zero within 5 W, indicating locking from then on. The upper right panel 

shows the mode amplitude, which saturates around that time to the value of 𝑊̃𝑠𝑎𝑡. The lower left 

panel shows the phase of the applied RMP field, which starts to increase linearly on a slow time scale 

at 20 W in an attempt to move the mode. However, the mode phase, shown in the lower right panel, 

does not follow the rotating RMP, indicating that the RMP force cannot overcome the braking force of 

the vessel in this case. 

 

Fig. 7: Temporal evolution of mode frequency (upper left), mode amplitude (upper right), phase of the 

RMP field (lower left) and phase of the mode (lower right) for a case with a saturated mode amplitude 

of 𝑊̃𝑠𝑎𝑡= 0.15, which locks to an RMP amplitude of 𝑊̃𝑡𝑜𝑡= 0.02, but cannot be moved on a reasonable 

timescale if the RMP field rotates with that amplitude. 

Increasing the RMP field to 𝑊̃𝑡𝑜𝑡= 0.04, the mode follows on this time scale, as can be seen in Fig. 8, in 

line with Eqn. (16), which predicts a threshold of 0.033 for this case. Thus, the conclusion is that at very 

low error field, the required amplitude of the RMP field is not given by the error field correction 

requirement, but rather by the time scale at which the mode should be rotated. However, this is not a 

problem for the presently envisaged parameters since it is well within the capability of the 3-D coils 

and the effect on the mode amplitude itself is very small in both cases 𝑊̃𝑡𝑜𝑡= 0.02 and 𝑊̃𝑡𝑜𝑡= 0.04, as 

indicated by the small change in the upper right panels after t = 20 W. If we want to rotate the mode 

faster, e.g. on the timescale of ~ 1 second, i.e. t = 2 W for the numbers used, the required 𝑊̃𝑡𝑜𝑡 

increases according according to Eqn. (16). Keeping in mind that the maximum angle by which we want 

to move the mode is , the required 𝑊̃𝑡𝑜𝑡will be 0.08, which increases the saturated amplitude by ~ 

20 %, so it is also not advisable to exceed that value largely, but the required RMP current of around 

100 kAt is now substantial, albeit still within the presently planned capabilities. We note that, in the 
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worst case (i.e. intrinsic error field 180 degree out of phase with the location of the ECCD launchers), 

this current would add to the current required for error field correction.  

 

Fig. 8: Similar to Fig. 8, but now with larger RMP amplitude 𝑊̃𝑡𝑜𝑡= 0.04. At this amplitude, the mode 

can be moved around with by the RMP field. 

 

4.) Summary and Conclusions 

We have studied the possibility to move locked modes by applying RMP fields in DEMO. The time scale 

of the process is given by the damping of eddy currents in the vessel wall and decreases with increasing 

RMP field and mode amplitude. We find that even for the low error field expected in DEMO, the mode 

will lock to the error field, but in order to move the mode on a typical time scale of tearing modes, the 

RMP amplitude required is exceeding that needed to compensate the intrinsic error field and thus sets 

the requirements. In this case, moving the mode on the time scale of 1 second (the typical reaction 

time of the ECCD system), an RMP coil current of 100 kAt is required for a mode amplitude of 𝑊̃𝑠𝑎𝑡 = 

0.15 for the EFC coils studied here and for correcting the vacuum field according to the TMEI. In the 

worst case (opposite phase of intrinsic error field and ECCD launchers), this would add on top of the 

current needed to compensate the intrinsic error field. 

The results can be easily updated for other cases (e.g. other coil configurations or different error field 

correction strategies (e.g. ITER criterion for the plasma response SVDs) using inputs on the error field 

on the q=2 surface provided in the same way as in the example shown above. 
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